Transition Maths and Algebra with Geometry

Tomasz Brengos

Lecture Notes Electrical and Computer Engineering

Contents

3 Recursive definitions of sequences

(4 同) 4 ヨ) 4 ヨ)

3

Sequence is an ordered collection of some elements. They are important because they appear everywhere. In particular, in computer science.

Definition

An infinite sequence is a function whose domain is the set of natural numbers $\mathbb{N} = \{1, 2, 3, \ldots\}$. In some cases it will be useful to define sequences as functions with domain $\mathbb{N}_0 = \{0, 1, 2, \ldots\}$.

- - 三下 - 三下

Notation and examples

Notation

Let $a : \mathbb{N} \to X$ be a sequence. Instead of writing a(n) we will write a_n . We use the following equivalent notations to denote a sequence:

$$a_1, a_2, \ldots = \{a_n\}_{n=1}^{\infty} = \{a_n\}$$

Unless stated otherwise, we assume that $X = \mathbb{R}$, i.e. we deal with sequences of real numbers only.

Examples:

$$a_n = \sqrt{n},$$

 $b_n = 2^n$

Arithmetic sequence

Definition

Let $a, d \in \mathbb{R}$ be two constants. A sequence $\{a_n\}$ of the form

 $a_1 = a,$ $a_2 = a + d,$... $a_n = a + (n - 1)d$

is called an arithmetic sequence with the initial value a and difference d.

Fact

A sequence $\{a_n\}$ is an arithmetic sequence iff it is of the form

$$a_1 = a,$$

 $a_n = a_{n-1} + d$ for $n > d$

for some $a, d \in \mathbb{R}$.

1

Geometric sequence

Definition

Let $a, q \in \mathbb{R}$ be two constants. A sequence $\{a_n\}$ of the form

 $a_1 = a,$ $a_2 = a \cdot q,$ \dots $a_n = a \cdot q^{n-1}$

is called a geometric sequence with the *initial value* a and the *quotient* q.

Fact

A sequence $\{a_n\}$ is a geometric sequence iff it is of the form

$$a_1 = a,$$

 $a_n = a_{n-1} \cdot q$ for $n > 1$

for some $a, q \in \mathbb{R}$.

Monotonic sequences

Definition

A sequence $\{a_n\}$ is called *increasing* if

$$a_1 < a_2 < a_3 \ldots < a_{n-1} < a_n < \ldots$$

 $\{a_n\}$ is decreasing if

$$a_1 > a_2 > a_3 \ldots > a_{n-1} > a_n > \ldots$$

<ロト <同ト < ヨト < ヨト

Monotonic sequences

Definition

A sequence $\{a_n\}$ is called *non-decreasing* if

$$a_1 \leq a_2 \leq a_3 \ldots \leq a_{n-1} \leq a_n \leq \ldots$$

 $\{a_n\}$ is non-increasing if

$$a_1 \geq a_2 \geq a_3 \ldots \geq a_{n-1} \geq a_n \geq \ldots$$

Examples: $a_n = 0$ is non-increasing and non-decreasing. It is not increasing nor it is decreasing.

 $b_n = n$ is increasing and non-decreasing. It is not decreasing nor it is non-increasing.

 $c_n = (-1)^n$ is neither of the four. PROGRAM ROZWOJOWY POLITECHNIKI WARSZAWSKIEJ

イロト イポト イヨト イヨト

Bounded sequences

Definition

A sequence $\{a_n\}$ is called bounded if there is a constant M>0 such that

 $|a_n| < M$ for all values of n

Equivalently,

 $-M < a_n < M$ for all values of n

Example: $a_n = \frac{1}{n}$ is bounded. Indeed, put M = 2 and see that

$$-2 < \frac{1}{n} < 2 \text{ for any } n.$$

Now take $b_n = n$. It is not bounded. **PROGRAM ROZWOJOWY** POLITECHNIKI WARSZAWSKIEJ

伺 ト イヨト イヨト

Bounded sequences

POLITECHNIKI WARSZAWSKIEJ

Definition

A sequence $\{a_n\}$ is called *bounded from above* if there is a constant M > 0 such that

 $a_n < M$ for all values of n

It is bounded from below if there is a constant M > 0 for which

 $-M < a_n$ for all values of n

Fact

A sequence is bounded iff it is bounded from above and bounded from below.

Example: Take $b_n = n$. It is not bounded, but it is bounded from below. PROGRAM ROZWOJOWY

・ 同 ト ・ ヨ ト ・ ヨ ト

Contents

3 Recursive definitions of sequences

3

Limits, informally

Informally, number *L* is the limit of a sequence $\{a_n\}$ if however close we get to *L* all but a finite number of terms of the sequence $\{a_n\}$ are even closer to *L*.

4 3 b

Limits: definition

Definition

A number *L* is called *the limit* of a sequence $\{a_n\}$ if for any positive $\varepsilon > 0$ there is a natural number N > 0 such that for any n > N the following inequality holds:

$$|a_n - L| < \varepsilon$$
 or equivalently $L - \varepsilon < a_n < L + \varepsilon$

It is denoted by

$$\lim_{n\to\infty}a_n=L.$$

A sequence which has a limit is called *convergent*. Otherwise it is called *divergent*.

→ Ξ → < Ξ →</p>

Limits: example

Consider the sequence $a_n = \frac{1}{n}$. Intuitively, we see that $\lim_{n\to\infty} \frac{1}{n} = 0$. Formally, fix $\varepsilon > 0$. We want to find N > 0 (depending on ε) such that

$$|a_n - L| < \varepsilon$$
 for all $n > N \equiv |rac{1}{n} - 0| < \varepsilon$

We solve the inequality $|\frac{1}{n}| < \varepsilon$:

$$|\frac{1}{n}| < \varepsilon \iff \frac{1}{n} < \varepsilon \iff n > \frac{1}{\varepsilon}$$

Hence, if we put N to be any natural number greater than $\frac{1}{\varepsilon}$ then for any n > N we have

Limits: properties

Definition

A sequence $\{b_n\}$ is said to be a subsequence of a sequence $\{a_n\}$ if it is obtained from $\{a_n\}$ by deleting some of the terms of $\{a_n\}$. In other words, if the terms of $\{b_n\}$ appear within the terms of $\{a_n\}$ in their given order.

Example:
$$\{b_n\} = 2, 4, 6, 8, ...$$
 is a subsequence of $\{a_n\} = 1, 2, 3, 4...$

Theorem

POLITECHNIKI WARSZAWSKIEI

A sequence $\{a_n\}$ converges to L iff all of its subsequences converge

FUNDUSZ SPOŁECZN

📃 to *L*.

Limits: properties

Theorem

A sequence $\{a_n\}$ converges to L iff all of its subsequences converge to L.

Example: Consider $a_n = (-1)^n$. $\{a_n\} = -1, 1, -1, 1, -1, \ldots$ We see that $b_n = 1$ and $c_n = -1$ are subsequences of a_n . Moreover,

$$\lim_{n\to\infty} b_n = 1,$$
$$\lim_{n\to\infty} c_n = -1.$$

Hence, a_n is NOT convergent.

16/36

Limits: properties

Theorem

Assume that $\lim a_n = A$ and $\lim b_n = B$. Then

•
$$\lim(a_n+b_n)=A+B$$
,

•
$$\lim(a_n-b_n)=A-B$$

•
$$\lim(a_n \cdot b_n) = A \cdot B_n$$

•
$$\lim(c \cdot a_n) = c \cdot A$$
 for any constant $c \in \mathbb{R}$

•
$$\lim(\frac{a_n}{b_n}) = \frac{A}{B}$$
 if only $b_n \neq 0$ and $B \neq 0$.

Example
$$\lim \frac{1}{n^2} = \lim \frac{1}{n} \cdot \frac{1}{n} = 0 \cdot 0 = 0.$$

イロト イポト イヨト イヨト

э

17/30

Sandwich Theorem

Fact

Let $\{a_n\}$ and $\{b_n\}$ be two convergent sequences. If $a_n \leq b_n$ for all but finite number of indices n then

$$\lim_{n\to\infty}a_n\leq\lim_{n\to\infty}b_n$$

Sandwich Theorem

If $a_n \leq b_n \leq c_n$ for all but finite number of indices n and $\lim a_n = \lim c_n = L$ then

$$\lim_{n\to\infty}b_n=L.$$

- 4 同 1 - 4 回 1 - 4 回 1

Sandwich Theorem

Consider

$$b_n=rac{\cos(n)}{n^2}.$$

We know that $-1 \leq \cos(n) \leq 1$. Hence,

$$\frac{-1}{n^2} \leq \frac{\cos(n)}{n^2} \leq \frac{1}{n^2}$$

We know that

$$\lim_{n\to\infty}\frac{-1}{n^2}=\lim_{n\to\infty}\frac{1}{n^2}=0.$$

Therefore,

< ∃ > < ∃ >

Boundedness monotonicity and convergence

Theorem

Every convergent sequence is bounded.

The converse is NOT true, but...

Theorem

Every monotonic and bounded sequence is convergent.

20/36

Divergence to $\pm\infty$

Definition

We say that a sequence $\{a_n\}$ diverges to ∞ if for any r > 0 there is and index N > 0 such that

$$a_n > r$$
 for any $n > N$

Similarly, we define divergence to $-\infty$. We denote it by $\lim_{n\to\infty} a_n = \infty$ (resp. $\lim_{n\to\infty} a_n = -\infty$).

Example: $a_n = -n^2$ is a sequence diverging to $-\infty$.

21/30

Diverging sequences

Theorem

A non-decreasing sequence $\{a_n\}$ unbounded from above is divergent to ∞ .

A dual statement is also true:

Theorem

A non-increasing sequence $\{a_n\}$ unbounded from below is divergent to $-\infty$.

Diverging sequences: properties

Theorem

- if $\lim_{n\to\infty} a_n = \pm \infty$ then $\lim_{n\to\infty} \frac{1}{a_n} = 0$,
- if $\lim_{n\to\infty} a_n = \infty$ and $\{b_n\}$ is bounded from below then $\lim_{n\to\infty} (a_n + b_n) = \infty$,
- if $\lim_{n\to\infty} a_n = \infty$ and for any n a sequence $\{b_n\}$ satisfies $b_n \ge c$, where c > 0 is a constant then $\lim_{n\to\infty} (a_n \cdot b_n) = \infty$,
- if $\lim_{n\to\infty} a_n = \infty$ and for any n a sequence $\{b_n\}$ satisfies $a_n \leq b_n$ then $\lim_{n\to\infty} b_n = \infty$.

23/30

Sequence $(1 + \frac{1}{n})^n$

Consider a sequence

$$a_n = (1 + rac{1}{n})^n.$$

We calculate some its first few terms:

- *a*₁ = 2,
- $a_2 = \frac{9}{4} = 2.25$,
- *a*₃ ≈ 2.37,
- *a*₄ ≈ 2.44,
- *a*₅ ≈ 2.48,
- . . .,

Question

What does a_n converge to? Is it convergent at all?

Sequence $(1+\frac{1}{n})^n$

Recall that any monotonic and bounded sequence is convergent.

Fact

The sequence $a_n = \left(1 + \frac{1}{n}\right)^n$ is monotonic and bounded. Hence, it is convergent.

Proof (monotonicity):

We will show that a_n is increasing $(a_{n+1} > a_n$ for any n). It is enough to show that the following inequality holds for any n:

Sequence $(1 + \frac{1}{n})^n$

Proof (monotonicity): Indeed,

$$\frac{a_n}{a_{n+1}} = \frac{(1+\frac{1}{n})^n}{(1+\frac{1}{n+1})^{n+1}} = \frac{(1+\frac{1}{n})^n}{(1+\frac{1}{n+1})^n} \cdot \frac{1}{1+\frac{1}{n+1}} = \left(\frac{1+\frac{1}{n}}{(1+\frac{1}{n+1})}\right)^n \cdot \frac{n+1}{n+2} = \left(\frac{(n+1)^2}{n\cdot(n+2)}\right)^n \cdot \frac{n+1}{n+2} = \left(\frac{(n+1)^2}{(n+1)^2-1}\right)^n \cdot \frac{n+1}{n+2} = \left(\frac{(n+1)^2}{(n+1)^2-1}\right)^n \cdot \frac{n+1}{n+2} = \left(\frac{(1+\frac{1}{n+1})^2}{(1+\frac{1}{n+1})^2}\right)^n \cdot \frac{n+1}{n+2} = \left(\frac{(1+\frac{1}{n+1})^2}{(1+\frac{1}{n+1})^2-1}\right)^n \cdot \frac{n+1}{n+2} = \left(\frac{(1+\frac{1}{n+1})^2}{(1+\frac{1}{n+1})^2}\right)^n \cdot \frac{n+1}{n+2} = \left(\frac{(1+\frac{1}{n+1})^2}{(1+\frac{1}{n+1})^2-1}\right)^n \cdot \frac{(1+\frac{1}{n+1})^2}{(1+\frac{1}{n+1})^2-1}\right)^n \cdot \frac{(1+\frac{1}{n+1})^2}{(1+\frac{1}{n+1})^2-1}$$

□ ▶ 《 臣 ▶ 《 臣 ▶

26/36

3

Sequence $(1+\frac{1}{n})^n$

Proof (monotonicity):

$$\frac{a_n}{a_{n+1}} = \left(\frac{1}{1 - \frac{1}{(n+1)^2}}\right)^n \cdot \frac{n+1}{n+2}$$

Here, we apply the following well-known inequality

$$(1+x)^n \ge 1 + nx.$$

Sequence $(1 + \frac{1}{n})^n$

We get:

$$\left(\frac{1}{1-\frac{1}{(n+1)^2}}\right)^n \cdot \frac{n+1}{n+2} \le \left(\frac{1}{1-\frac{n}{(n+1)^2}}\right) \cdot \frac{n+1}{n+2} = \\ \frac{(n+1)^3}{(n+2) \cdot ((n+1)^2 - n)} = \frac{(n+1)^3}{(n+1)^3 + 1} < 1.$$

3

Sequence $(1 + \frac{1}{n})^n$

Hence,

$$\frac{a_n}{a_{n+1}} < 1$$

This means that the sequence is increasing. It is also possible to prove that

$$0 < a_n < 3$$
 for any n .

In other words, it is possible to prove that $\{a_n\}$ is a bounded sequence.

29/36

Number e

The limit of the sequence $\{a_n\}$ is denoted by e and is called the *Euler number*.

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Approximations of *e* may be calculated:

e = 2.7182818284590452...

3.5

Important limits

Limits

۲

۲

P

• if a > 1 then

 $\lim_{n\to\infty}a^n=\infty,$

• if |a| < 1 then

 $\lim_{n\to\infty}a^n=0,$

• if a > 0 then

- $\lim_{n\to\infty}\sqrt[n]{a}=1,$
- $\lim_{n\to\infty}\sqrt[n]{n}=1,$

$$\lim_{n\to\infty}\left(1+\frac{x}{n}\right)^n=e^x$$

イロト イポト イヨト イヨト

э

Limits Recursive definitions of sequences

Important limits: examples

Consider a sequence $\left(\frac{n-2}{n}\right)^n$. We have

$$\left(\frac{n-2}{n}\right)^n = \left(1 + \frac{-2}{n}\right)^n \to e^{-2}.$$

Now consider $\sqrt[n]{3n}$:

$$\sqrt[n]{3n} = \sqrt[n]{3}\sqrt[n]{n} \to 1 \cdot 1 = 1.$$

< ∃ > < ∃ >

Contents

< 17 ▶

Definition

A recursive definition of a sequence $\{a_n\}$ comprises:

- explicite definition of some first few terms,
- rule for calculating *n*-th from previous terms.

Example: $a_1 = 1$ and $a_n = n \cdot a_{n-1}$. The sequence is equal to

$$a_n = n! = 1 \cdot 2 \cdot 3 \ldots \cdot n.$$

34/30

Example: $f_0 = 1$, $f_1 = 1$ and

$$f_n=f_{n-1}+f_{n-2}.$$

We obtain the following sequence:

 $1, 1, 2, 3, 5, 8, 13, \ldots$

This sequence is called *Fibonacci* sequence.

Consider a sequence $\{x_n\}$ defined by

$$x_n = \sqrt{2x_{n-1} - 1}, \quad x_1 = 2.$$

Is it convergent? If so to what does it converge? Let us assume that $\{x_n\}$ is convergent (proof of this statement is left as a homework). Let $x_n \to L$. Hence, $x_{n-1} \to L$ and

$$L=\sqrt{2L-1}$$

$$L=\sqrt{2L-1}$$

implies

$$L^2 = 2L - 1$$
. Hence, $L^2 - 2L + 1 = 0$.

The solution is L = 1.

< 一型

< ∃ > < ∃ >