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Sequences

Sequence is an ordered collection of some elements. They are
important because they appear everywhere. In particular, in
computer science.

Definition

An infinite sequence is a function whose domain is the set of
natural numbers N = {1, 2, 3, . . .}. In some cases it will be useful
to define sequences as functions with domain N0 = {0, 1, 2, . . .}.
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Notation and examples

Notation

Let a : N→ X be a sequence. Instead of writing a(n) we will write
an. We use the following equivalent notations to denote a
sequence:

a1, a2, . . . = {an}∞n=1 = {an}

Unless stated otherwise, we assume that X = R, i.e. we deal with
sequences of real numbers only.

Examples:

an =
√

n,

bn = 2n.
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Arithmetic sequence

Definition

Let a, d ∈ R be two constants. A sequence {an} of the form

a1 = a,

a2 = a + d ,

. . .

an = a + (n − 1)d

is called an arithmetic sequence with the initial value a and difference d .

Fact

A sequence {an} is an arithmetic sequence iff it is of the form

a1 = a,

an = an−1 + d for n > 1

for some a, d ∈ R.
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Geometric sequence

Definition

Let a, q ∈ R be two constants. A sequence {an} of the form

a1 = a,

a2 = a · q,
. . .

an = a · qn−1

is called a geometric sequence with the initial value a and the quotient q.

Fact

A sequence {an} is a geometric sequence iff it is of the form

a1 = a,

an = an−1 · q for n > 1

for some a, q ∈ R.
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Monotonic sequences

Definition

A sequence {an} is called increasing if

a1 < a2 < a3 . . . < an−1 < an < . . .

{an} is decreasing if

a1 > a2 > a3 . . . > an−1 > an > . . .
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Monotonic sequences

Definition

A sequence {an} is called non-decreasing if

a1 ≤ a2 ≤ a3 . . . ≤ an−1 ≤ an ≤ . . .

{an} is non-increasing if

a1 ≥ a2 ≥ a3 . . . ≥ an−1 ≥ an ≥ . . .

Examples: an = 0 is non-increasing and non-decreasing. It is not increasing nor
it is decreasing.
bn = n is increasing and non-decreasing. It is not decreasing nor it is
non-increasing.

cn = (−1)n is neither of the four.
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Bounded sequences

Definition

A sequence {an} is called bounded if there is a constant M > 0
such that

|an| < M for all values of n

Equivalently,

−M < an < M for all values of n

Example: an = 1
n

is bounded. Indeed, put M = 2 and see that

−2 <
1

n
< 2 for any n.

Now take bn = n. It is not bounded.
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Bounded sequences

Definition

A sequence {an} is called bounded from above if there is a constant
M > 0 such that

an < M for all values of n

It is bounded from below if there is a constant M > 0 for which

−M < an for all values of n

Fact

A sequence is bounded iff it is bounded from above and bounded
from below.

Example: Take bn = n. It is not bounded, but it is bounded from below.
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Limits, informally

Informally, number L is the limit of a sequence {an} if however
close we get to L all but a finite number of terms of the sequence
{an} are even closer to L.
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Limits: definition

Definition

A number L is called the limit of a sequence {an} if for any
positive ε > 0 there is a natural number N > 0 such that for any
n > N the following inequality holds:

|an − L| < ε or equivalently L− ε < an < L + ε

It is denoted by
lim

n→∞
an = L.

A sequence which has a limit is called convergent. Otherwise it is
called divergent.
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Limits: example

Consider the sequence an = 1
n . Intuitively, we see that limn→∞

1
n = 0.

Formally, fix ε > 0. We want to find N > 0 (depending on ε) such that

|an − L| < ε for all n > N ≡ |1
n
− 0| < ε

We solve the inequality | 1n | < ε:

|1
n
| < ε ⇐⇒ 1

n
< ε ⇐⇒ n >

1

ε

Hence, if we put N to be any natural number greater than 1
ε then for any

n > N we have

n > N >
1

ε
.
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Limits: properties

Definition

A sequence {bn} is said to be a subsequence of a sequence {an} if
it is obtained from {an} by deleting some of the terms of {an}. In
other words, if the terms of {bn} appear within the terms of {an}
in their given order.

Example: {bn} = 2, 4, 6, 8, . . . is a subsequence of
{an} = 1, 2, 3, 4 . . ..

Theorem

A sequence {an} converges to L iff all of its subsequences converge
to L.
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Limits: properties

Theorem

A sequence {an} converges to L iff all of its subsequences converge
to L.

Example: Consider an = (−1)n. {an} = −1, 1,−1, 1,−1, . . .. We
see that bn = 1 and cn = −1 are subsequences of an. Moreover,

lim
n→∞

bn = 1,

lim
n→∞

cn = −1.

Hence, an is NOT convergent.
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Limits: properties

Theorem

Assume that lim an = A and lim bn = B. Then

lim(an + bn) = A + B,

lim(an − bn) = A− B,

lim(an · bn) = A · B,

lim(c · an) = c · A for any constant c ∈ R
lim( anbn ) = A

B if only bn 6= 0 and B 6= 0.

Example lim 1
n2 = lim 1

n ·
1
n = 0 · 0 = 0.
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Sandwich Theorem

Fact

Let {an} and {bn} be two convergent sequences. If an ≤ bn for all
but finite number of indices n then

lim
n→∞

an ≤ lim
n→∞

bn

Sandwich Theorem

If an ≤ bn ≤ cn for all but finite number of indices n and
lim an = lim cn = L then

lim
n→∞

bn = L.
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Sandwich Theorem

Consider

bn =
cos(n)

n2
.

We know that −1 ≤ cos(n) ≤ 1. Hence,

−1

n2
≤ cos(n)

n2
≤ 1

n2

We know that

lim
n→∞

−1

n2
= lim

n→∞

1

n2
= 0.

Therefore,

lim
n→∞

cos(n)

n2
= 0.
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Boundedness monotonicity and convergence

Theorem

Every convergent sequence is bounded.

The converse is NOT true, but...

Theorem

Every monotonic and bounded sequence is convergent.
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Divergence to ±∞

Definition

We say that a sequence {an} diverges to ∞ if for any r > 0 there
is and index N > 0 such that

an > r for any n > N

Similarily, we define divergence to −∞. We denote it by
limn→∞ an =∞ (resp. limn→∞ an = −∞).

Example: an = −n2 is a sequence diverging to −∞.
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Diverging sequences

Theorem

A non-decreasing sequence {an} unbounded from above is
divergent to ∞.

A dual statement is also true:

Theorem

A non-increasing sequence {an} unbounded from below is
divergent to −∞.
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Diverging sequences: properties

Theorem

if limn→∞ an = ±∞ then limn→∞
1
an

= 0,

if limn→∞ an =∞ and {bn} is bounded from below then
limn→∞(an + bn) =∞,

if limn→∞ an =∞ and for any n a sequence {bn} satisfies
bn ≥ c , where c > 0 is a constant then limn→∞(an · bn) =∞,

if limn→∞ an =∞ and for any n a sequence {bn} satisfies
an ≤ bn then limn→∞ bn =∞.
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Sequence (1 + 1
n)n

Consider a sequence

an = (1 +
1

n
)n.

We calculate some its first few terms:

a1 = 2,

a2 = 9
4

= 2.25,

a3 ≈ 2.37,

a4 ≈ 2.44,

a5 ≈ 2.48,

. . .,

Question

What does an converge to? Is it convergent at all?
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Sequence (1 + 1
n)n

Recall that any monotonic and bounded sequence is convergent.

Fact

The sequence an =
(
1 + 1

n

)n
is monotonic and bounded. Hence, it

is convergent.

Proof (monotonicity):
We will show that an is increasing (an+1 > an for any n). It is
enough to show that the following inequality holds for any n:

an
an+1

< 1.
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Sequence (1 + 1
n)n

Proof (monotonicity): Indeed,

an
an+1

=
(1 + 1

n )n

(1 + 1
n+1 )n+1

=
(1 + 1

n )n

(1 + 1
n+1 )n

· 1

1 + 1
n+1

=(
1 + 1

n

1 + 1
n+1

)n

· n + 1

n + 2
=

(
n+1
n

n+2
n+1

)n

· n + 1

n + 2
=

(
(n + 1)2

n · (n + 2)

)n

· n + 1

n + 2
=(

(n + 1)2

(n + 1)2 − 1

)n

· n + 1

n + 2
=

(
(n + 1)2

(n + 1)2 − 1

)n

· n + 1

n + 2
=(

1

1− 1
(n+1)2

)n

· n + 1

n + 2
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Sequence (1 + 1
n)n

Proof (monotonicity):

an
an+1

=

(
1

1− 1
(n+1)2

)n

· n + 1

n + 2
.

Here, we apply the following well-known inequality

(1 + x)n ≥ 1 + nx .
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Sequence (1 + 1
n)n

We get:(
1

1− 1
(n+1)2

)n

· n + 1

n + 2
≤

(
1

1− n
(n+1)2

)
· n + 1

n + 2
=

(n + 1)3

(n + 2) · ((n + 1)2 − n)
=

(n + 1)3

(n + 1)3 + 1
< 1.
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Sequence (1 + 1
n)n

Hence,

an
an+1

< 1.

This means that the sequence is increasing. It is also possible to
prove that

0 < an < 3 for any n.

In other words, it is possible to prove that {an} is a bounded
sequence.

{an} increasing and bounded =⇒ {an} convergent
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Number e

The limit of the sequence {an} is denoted by e and is called the
Euler number.

e := lim
n→∞

(
1 +

1

n

)n

.

Approximations of e may be calculated:

e = 2.7182818284590452...
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Important limits

Limits

if a > 1 then
lim
n→∞

an =∞,

if |a| < 1 then
lim
n→∞

an = 0,

if a > 0 then
lim
n→∞

n
√

a = 1,

lim
n→∞

n
√

n = 1,

lim
n→∞

(
1 +

x

n

)n
= ex
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Important limits: examples

Consider a sequence (n−2
n )n. We have(

n − 2

n

)n

=

(
1 +
−2

n

)n

→ e−2.

Now consider n
√

3n:

n
√

3n =
n
√

3 n
√

n→ 1 · 1 = 1.
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Recursive definitions

Definition

A recursive definition of a sequence {an} comprises:

explicite definition of some first few terms,

rule for calculating n-th from previous terms.

Example: a1 = 1 and an = n · an−1. The sequence is equal to

an = n! = 1 · 2 · 3 . . . · n.
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Recursive definitions

Example: f0 = 1, f1 = 1 and

fn = fn−1 + fn−2.

We obtain the following sequence:

1, 1, 2, 3, 5, 8, 13, . . .

This sequence is called Fibonacci sequence.
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Recursive definitions

Consider a sequence {xn} defined by

xn =
√

2xn−1 − 1, x1 = 2.

Is it convergent? If so to what does it converge? Let us assume
that {xn} is convergent (proof of this statement is left as a
homework). Let xn → L. Hence, xn−1 → L and

L =
√

2L− 1
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Recursive definitions

The equation
L =
√

2L− 1

implies
L2 = 2L− 1. Hence, L2 − 2L + 1 = 0.

The solution is L = 1.
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